DOCUMENT RESUME

BD 148 302

IR 005 252

AUTHOR TITLE

Gershman, Anatole V.

TITLE .

Analyzing English Noun Groups for Their Conceptual

Content.

SPONS AGENCY

Advanced Research Projects Agency (DOD), Washington,

Ď.C.

PUB DATE 77

CONTRACT

N00014-75-C-1111

NOTE

39p.

EDRS PRICE DESCRIPTORS MP-\$0.83 HC-\$2.06 Plus Postage.

*Artificial Intelligence: *Computational Linguistics: Computer Programs: *Machine Translation: *Nominals:

Phrase Structure: *Programing Languages

ABSTRACT

An expectation based system, NGP, for parsing English noun groups into the Conceptual Dependency representation is described. The system is a part of English-Language Interpreter (ELI) which is used as the front end to several natural language understanding systems and is capable of handling a wide range of sentences of considerable complexity. NGP processes the input from left to right, one word at a time, using linguistic and world knowledge to find the meaning of a noun group. Dictionary entries for individual words contain much of the program's knowledge. In addition, a limited ability for the handling of slightly incorrect sentences and unknown words is incorporated. (Author)

Documents acquired by ERIC include many informal unpublished
materials not available from other sources. ERIC makes every effort
to obtain the best copy available. Nevertheless, items of marginal
reproducibility are often encountered and this affects the quality
makes available
via the microfiche and hardcopy reproductions ERIC makes available
via the ERIC Document Reproduction Service (RDRS). EDRS is not
responsible for the quality of the original addition. Reproductions
supplied by EDRS are the best that can be made from the original.

U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN-ATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE-SENT OFFICIAL NATIONAL INSTITUTE OF EOUCATION POSITION OR POLICY

Analyzing English Noun Groups for their Conceptual Content

Anatole V. Gershman - 4

IR:

Analyzing English Noun Groups for their Conceptual Content

Anatole V. Gershman
Department of Computer Science
Yale University
New Haven, Connecticut 06520

SCOPE OF INTEREST NOTICE
The ERIC Facility has assigned this document for processing

In our judgement, this document is also of interest to the clearing-houses noted to the right, Indexing should reflect their special points of view.

Abstract

An expectation-based system NGP, for parsing English noun. Conceptual Dependency representation is into the The described. system is a part of ELI (English Interpreter) is used as the front end to several natural which language understanding systems and is capable of handling a wide range of sentences of considerable complexity. NGP processes the input from left to right, one word at a time, using linguistic and world knowledge to find the meaning of a noun group. Dictionary entries for individual words contain much of the program's knowledge. In addition, a limited ability for the program's knowledge. handling of slightly incorrect sentences and unknown words is incorporated.

0. Introduction :

Every natural language processor has to have the ability to interpret noun phrases. This paper describes a set of programs called NGP (Noun Group Processor) which is an integral part of ELI, the English Language Interpreter (Riesbeck and Schank 1976) which serves as the front end to three of the Yale natural language understanding systems, SAM, PAM and WEIS. SAM is a system capable of understanding stories such as various newspaper reports by using scripts (Schank and Abelson 1975, 1977; Cullingford 1975, 1977). PAM is an understanding system which

This work was supported in part by the Advanced Research Projects Agency of the Department of Defense and monitored under the Office of Naval Research under contract N00014-75-C-1111

uses general knowledge about peoples' goals and plans (Wilensky 1976). WEIS is a system which understands and classifies a great variety of isolated newspaper headlines on international relations. Thus, our task was to process not only noun phrases of considerable complexity but also to interpret newspaper headlines, which are not always grammatically correct. The following two examples illustrate the kind of sentences our system is able to handle.

- 1. A CONNECTICUT MAN, JOHN DOE, AGE 23, OF 342 COLLEGE AVENUE,

 NEW HAVEN WAS PRONOUNCED DEAD AT THE SCENE BY DR. DANA
 BLAUCHARD, MEDICAL EXAMINER.
- 2. FUNERAL OF INDIA'S SHASTRI ATTENDED BY USSR, KOŞYGIN AND USA HUMPHREY.

To process such a large scope of sentences the program makes extensive use of its knowledge of the problem domain and the redundancy of natural language expressions. This saves effort and permits correct processing of such irregularities of input texts as missing commas and articles, or slightly incorrect word order. It also provides for the ability to ignore unknown words or (in some cases) to make plausible interpretations of unknown words. This knowledge is kept in the dictionary. The control mechanisms remain domain independent.

NGP is a production-like system which uses expectations as its basic control mechanism. The problem with every production-like system is the tendency for the accumulation of a large number of expectations fighting for a chance to be

various expectations are organized and processed, which, I believe, is in fact a theory of how people process natural language. The basic guiding principle for this theory was its intuitive plausibility.

1. Noun Group Semantics

We differentiate four classes of noun groups according to the conceptual structures they generate.

- 1. PP Picture Producers
- 2. CTP' Concept Producers
- 3. TD Time Descriptors
- 4. SD State Descriptors

1.1 Picture Producers

PP's are defined by Schank (Schank 1975) as concepts which tend to produce pictures of real world items in the mind of a hearer. For example,

(1) A BIG RED APPLE

is a Picture Producing noun group. To understand, such an litem means to identify the structure in the memory which corresponds to this item if such a structure exists or to create one according to some frame. This is done in two stages. In the first stage, we analyze the input phrase and translate it into an

expression in Conceptual Dependency (Schank 1972, 1973, 1975).

This expression should preserve in a language independent form all the information contained in the surface phrase. Thus (1) will generate

(PHYSOBJ TYPE (APPLE) COLOR (x) SIZE (y) DETERM (INDEF)),

where x and y are points on the color and size scales. In the second stage, we identify the CD expression with the existing memory structures by performing the necessary memory search and feature matching.

A CD expression for a PP consists of a header followed by a property list. The header is similar to a superset pointer in hierarchically organized memory systems. It points to a frame of properties that the PP is expected to have. The property list explicitly given in the CD expression must, be compatible with this frame. Thus, a (#PERSON) is expected to have FIRSTNAME, LASTNAME, RESIDENCE; etc. but a (#PHYSOBJ) is not. All properties not included in the frame must be specified by a REL clause. For example,

(2) JOHN DOE; THE PASSENGER OF THE CAR

is represented by

(PERSON FISTNAME (JOHN) LASTNAME (DOE)

REL (('<=> (\$DRIVE PASSENGER MODFOCUS)))),

where MODFOCUS is a back pointer to the focus of the REI modifier, i.e. to (#PERSON ...)

SAM's memory program accepts 7 general classes of PP's: #PERSON, #PHYSOBJ, -#ORGANIZATION, #LOCALE, #ROAD, #GROUP, and #POLITY, which can be illustrated by the following examples:

- (3) JOHN = (PERSON FIRSTNAME (JOHN))
- (4) TABLE = (#PHYSOBJ TYPE (*TABLE*))
- (5) NAVY = (#ORGANIZATION BRANCH (NAVY))
- (6) 593 FOXON RD = (#LOCALE STREETNUMBER (593)

STREETNAME (FOXON)

STREETTYPE (ROAD))

(7) ROUTE 69 = (#ROAD ROADNUMBER (69)

ROADTYPE (HIGHWAY))

(8) JOHN AND MARY = (#GROUP

MEMBER (#PERSON FIRSTNAME (JOHN))

MEMBER (#PERSON FIRSTNAME (MARY)))

(9) USA = (#POLITY TYPE (COUNTRY) NAME (USA).)

1.2 Concept Producers

Very often noun groups do not describe any real world items. Consider the following sentence:

(12) JOHN VOTED IN THE 1976 PRESIDENTIAL ELECTION.

THE 1976 PRESIDENTIAL ELECTION does not produce a single "picture" in the mind of the hearer. Rather, it points to a complicated concept involving the names of the candidates, primaries, voter registration, etc. The knowledge about typical elections is normally organized in a script-like form. The verb VOTED specifies the role John played in the election script.

Thus, the meaning of (12) is the invocation of the election script and the instantiation of the script roles. The CD representation of THE 1976 PRESIDENTIAL ELECTION produced by the parser looks as follows:

(\$ELECTION TYPE (PRESIDENTIAL) TIME (1976) REF (DEF)),

where \$ELECTION is a script name and TYPE and TIME are script parameters. This output is interpreted by the Script Applier.

All script names and parameters which appear in the CD expression must be recognizable by the Script Applier.

1.3 Time Descriptors

This type of noun group can be illustrated by the following example:

(13) LAST YEAR WAS BAD FOR JOHN.

Sentence (13) means that something unspecified happened which. made John unhappy and that this event (or events) occurred during last year. LASE YEAR does not generate a separate concept but enters as a time modifier into another concept. Other examples of Time Descriptors are: YESTERDAY, MONDAY MORNING, THE WHOLE DAY, etc.

1.4 State Descriptors

Noun groups of this class produce assertions about the states of PP's. For example, the meaning of

(14) THE BEAUTY OF THE PLACE (struck John)

is "THE PLACE IS VERY HIGH ON SOME AESTHETIC SCALE", or, in CD form:

` [(ACTOR (#LOCALE REF (DEF)) IS (*AESTHETIC-SCALE* VAL (10))

Phrase (14) is an assertion of a fact about the place rather than a PP with a modifier as in

(15) (I saw) A BEAUTIFUL PLACE,

which can be represented in CD form as (#BOCALE

REL ((ACTOR MODFOCUS IS (*AÉSTHETIC-SCALE* VAL (10))))
REF (INDEF)),

i.e. a place which is very high on some, aesthetic scale.

2: Basic Noun Group Parser

The goal and the general methods of the Noun Group Parser (NGP) are identical to the rest of ELI, i.e. the goal of NGP is the extraction of the conceptualizations that underlie the input. Expectations are its basic mechanisms of operation. (See Riesbeck and Schank 1976). However, the control structure and the order in what the expectations are stored and tested in NGP are very different from those of ELI. To put it briefly, in ELI all the expectations are placed in one pool and are tested whenever a new word or concept is considered. NGP takes advantage of the relatively rigid structure of English houn groups to select and order suitable expectations at each point of the process. The program examines the words of the input string

from left to right. The basic loop of the analyzer consists of two steps:

- 1. The dictionary definition of the current word is 'loaded' into the active memory.
- 2. Relevant expectations are selected and tested. If an expectation is satisfied, the actions associated with it are executed.

This basic loop is similar to the monitoring control program of ELI or any other production-like system. The difference is in the selection and ordering of expectations. This process is rather complicated and I will try to describe it systematically and in increasingly greater detail throughout the rest of the paper. I will begin by presenting the analysis of a simple example:

(1) LARGE CHÎNESE RESTAURANT

First, NGP sees the word LARGE. The dictionary definition of LARGE is a program which can test the environment when LARGE is brought into the active memory and build the initial SEMANTIC NODE for it. These semantic nodes (called NGP nodes in the program) are the construction sites where various parts of the future CD expression are being assembled. The node for LARGE, say NGPl, has an expectation attached to it which says "if the next semantic node is an inanimate PP then attach modifier" SIZE (x) to it. NGPl is saved in a stack called MODLIST.

The word CHINESE builds the semantic node NGP2, whose SEMANTIC* VALUE is (*CHINA*) and which has an expectation saying "if the next semantic node is a #PHYSOBJ then/attach the modifier MADEIN (*CHINA*) to it, if it is a #PERSON or an #ORGANIZATION then attach the modifier PARTOF (*CHINA*) to it. Having done this, the monitor checks the expectation attached to NGP1. It fails and NGP2 is placed on the top of MODLIST:

Next comes the word RESTAURANT. It builds the semantic node is (#ORGANIZATION OCCUPATION whose semantic value (RESTAURANT)) and which has an expectation: "if the PREVIOUS semantic onode can be a restaurant type then attach it to the current node". Now the monitor goes into the expectation testing mode of operation. It sees two sets of expectations: those attached to NGP2 looking "forward" at NGP3 and those attached looking "backward" at NGP2. Expectations attached to NGP1 are not considered because NGPl is hidden by NGP2. First, the monitor tests those expectations of the current node which look "backward" (called BACKWARD in the program). If' there are no such expectations or if all of them fail, the monitor tests the forward expectations (called FORWARD in the program) the previous semantic node: If an expectation is satisfied, the stack is popped and the process is repeated until no .expectations are satisfied. Intuitively, MODLIST contains those modifiers which have not yet been attached. The current node, which is kept in NGAP, is the focus of assembling activities at each step. In our example (*CHINA*) can be a, restaurant type, the expectation is satisfied, the value of NGP3 is modified, and

NGP2 is removed from MODLIST. The following diagram illustrates

the transition:

BEFORE: MODLIST = NGP2, NGP1

NGAP = NGP3

NGP3 = (#ORGANIZATION OCCUPATION (RESTAURANT))

AFTER - MODLIST = NGP1

NGAP = NGP3

NGP3 = (#ORGANIZATION OCCUPATION (RESTAURANT)

TYPE (*CHINA*))

Now the monitor sees NGPl on the top of the stack. Since NGP3 does not have any BACKWARD expectations left, the FORWARD expectation of NGPl is tested. Note that at this point, NGP3 does not correspond to any particular word, but represents the combined meaning of CHINESE RESTAURANT. LARGE can be attached to NGP3 and the resulting structure is:

MODLIST = EMPTY

NGAP = NGP3

NGP3 = (#ORGANIZATION OCCUPATION (RESTAURANT)

TYPE (*CHINA*)

SIZE (x))

So far, we have introduced the following concepts:

SEMANTIC NODES - are the nuclei around which all construction

activities are done. The value of a semantic node is a

piece of conceptual structure which might be used in

assembling the CD expression for the whole noun group.

BACKWARD and FORWARD - are the two groups of expectations attached to a semantic node.

NGAP - holds the current semantic node.

MODLIST - is a stack which holds all previous semantic nodes.

The basic control algorithm of NGP, which was informally described with the help of the above example, now can be stated in more precise terms:

STEP1 Read new word. Execute its definition and put the resulting semantic node in NGAP.

STEP2 If MODLIST is empty then go to STEP7 else go to STEP3.

STEP3 If NGAP does not have any BACKWARD expectations go to

STEP4 Evaluate BACKWARD expectations of NGAP. In case of failure go to STEP5, otherwise pop the stack and go to STEP2.

any FORWARD expectations then go to STEP7, otherwise go to

STEP6 Evaluate FORWARD expectations. In case of failure go to STEP7, otherwise pop the stack and go to STEP2.

STEP7 Put the content of NGAP (current semantic node) on MODLIST and go to STEP1.

The underlying assumptions of this algorithm are:

- (a) People read noun groups from left to right.
- (b) People do not passively accumulate words until they decide that they have reached the head noun. Instead, they make decisions about the interpretations and combinations of words as soon as it becomes possible (i.e. as soon as an expectation is satisfied). Thus, in a phrase MEAT SHOP OWNER, MEAT SHOP is interpreted before OWNER is read.

(c) Expectations attached to words which come later in the phrase usually are stronger than those of preceding words. In the sequence of words of a simple noun group (like FEARLESS CHINESE SOLDIER) words on the left are usually modifiers of some word on the right. A modifier normally has FORWARD expectations for a fairly large class of items it can modify. On the other hand, it is relatively seldom that a word is looking for a particular modifier on its left. In general, the more specific the expectation is, the higher priority it should have. This is what happened in our example with CHINESE RESTAURANT.

So far, I have carefully avoided one very important problem. My basic control algorithm does not have a STOP statement. Where does a noun group end? This problem is discussed in the next section.

3. The Problem of Boundaries

One problem that any noun group processor has to solve is the problem of boundaries. Where does a noun group end? In most cases the answer to this question is quite simple: things like verbs, commas, prepositions, and articles terminate most noun groups. In practice, however, none of these indicators is very reliable. Consider the following example that NGP had to deal with:

(1) THE U.S. FORCES FIGHT IN VIETNAM IS HOPELESS.

This example illustrates the difficulties arising from the ambiguity of the part of speech classification of the words FORCES and FIGHT. When the context does not provide an early disambiguation we have to make a guess and then later correct it if necessary. As a first guess, NGP collects the maximum number of elements into a noun group. Thus it includes both FORCES and FIGHT rather than stopping after THE U.S.

- (2) BILL, JOHN, AND MARY LEFT.
- (3) BILL KICKED JOHN, AND MARY KICKED BILL.

BILL, JOHN, AND MARY in the second example constitute one semantic unit -

(#GROUP MEMBER (#PERSON FIRSTNAME (BILL))

MEMBER (PERSON FIRSTNAME (JOHN))

MÉMBER (PERSON FIRSTNAME (MARY))) *

But is it reasonable to consider this phrase as a single noun group on the surface level? Example (3) shows that JOHN, AND MARY might be different groups. Expectation external to the noun group must decide whether these three words can be clustered in one group. The same is true for examples (4) and (5), where the phrase ON THE TRAY may or may not be attached to the noun phrase THE GLASS.

- (4) JOHN SAW THE GLASS ON THE TRAY.
- (5) JOHN PUT THE GLASS ON THE TRAY."

On the other hand, the preposition OF in the phrase OF STATE in

example (6)

(6) U.S. ASSISTANT SECRETARY OF STATE MARSHALL GREEN

is predicted by the noun SECRETARY, and can be interpreted by the noun group processor without outside help. This brings in the following principle of noun group processing:

ANY UNEXPECTED WORD WHICH IS INCOMPATIBLE WITH THE CURRENT NOUN GROUP TERMINATES THE GROUP ON THE PRECEDING WORD.

Control is returned to the higher level routine which called the noun group and which decides how the group will be used. It might be attached to a preceding noun group or used otherwise.

Semantically, a phrase like

(7) A RECENT YALE GRADUATE, JIM MEEHAN, 77, ASSISTANT PROFESSOR OF COMPUTER SCIENCE AT UCI (was awarded ...)

is one PP and, therefore, should be considered one noun group. From the processing point of view, we need a more restricted definition of SURFACE noun groups. A SURFACE NOUN GROUP (or, simply, noun group) is a string of words which can be processed by NGP without relinquishing control to the higher processor.

What are the rules of compatibility which determine the boundaries of a surface noun group? All semantic nodes that can be used in a noun group must belong to one of the following classes: ADJECTIVE, ADVERB, NOUN, TITLE, NAME, NUMBER, DETERM, and BOGUS. (This information is stored on the node under the property MARKER). Class BOGUS is reserved for unknown words and

will be discussed later. Class TITLE contains all the words which can be followed by a name: professor, doctor, patrolman, president, etc. The noun group is processed from left to right as long as the following conditions are satisfied:

- (1) Each word which is not specifically expected must belong to one of the classes mentioned above.
- (2) No word can precede a DETERM.
- (3) ADJECTIVES, ADVERBS, and NUMBERS cannot be preceded by either NOUNS, TITLES; or NAMES.
- (4) TITLES and NOUNS cannot be preceded by a NAME.
- (5) A NAME cannot be immediately preceded by a NOUN.
- (6) A NAME cannot be preceded by a DETERM.

 For example, phrase (7) will be processed as four separate noun groups:
- (a) A RECENT YALE GRADUATE ends with a comma, but even if this comma were missing, the phrase would have been terminated at the same place by NAME, using rules 5 and 6
- (b) JIM MEEHAN ends with a comma
- (c) 27 special case of a noun group an age group
- (d) ASSISTANT PROFESSOR OF COMPUTER SCIENCE AT UCI ends with WAS which is a verb

Noun groups OF COMPUTER SCIENCE and AT UCI are processed without leaving NGP since the word PROFESSOR sets up expectations for them.

Rules (1) - (6) are much looser than the usual syntactic rules for noun groups (see, for example, Winograd 1972). But our goal is not the rejection of syntactically incorrect sentences.

We introduce restrictions only where they help, where their absence creates disambiguation or processing difficulties.

The other distinctive feature of our rules is that they are generated dynamically and can be changed by actions of any expectation. This is how, for example, possesives are handled:

(8) POLICE CHIEF'S NEW CAR

First, the node for POLICE CHIEF is build:

NGP1:

VALUE = (#PERSON OCCUPATION (POLICE-CHIEF))

. MARKER → TITLE

Then the program sees the possession mark which satisfies a special default expectation. The action of this expectation transforms NGP1 into:

NGP1:

VALUE = (#PERSON OCCUPATION (POLICE-CHIEF))

MARKER = ADJECTIVE

FORWARD = "If the next node is a #PHYSOBJ then make it POSSBY
the value of NGPl (i.e. by (#PERSON OCCUPATION
(POLICE-CHIEF)))"

4. Putting pieces Together.

In the previous section I described the basic noun group processor. Complex noun groups are broken into simpler phrases which are processed separately. Separately, however, does not mean independently. The previously built part of the noun group

can affect the analysis of the remaining parts. In this section I will describe the mechanism of this interaction and how various parts of a noun group are put together.

In accordance with our general principles, this process is driven by a hierarchically organized set of expectations. There are two kinds of expectations: (1) those dynamically generated by the input and (2) default expectations supplied by the control mechanism. These default expectations are designed to catch such unexpected things as appositives, addresses, age groups, etc. For example, when we hear A CONNECTICUT MAN in

(1) (The award was given to) A CONNECTICUT MAN, JOHN DOE, AGE 23, OF 234 COLLEGE AVENUE, NEW HAVEN.

we do not necessarily immediately expect to hear his name, age, and address, although we know that as a person he has these characteristics. These are secondary, default expectations which are tested only if other, explicit expectations fail. In the above example the processing goes as follows:

·First, A CONNECTICUT MAN is collected, generating:

(2) (#PERSON GENDER (MALE)

RESIDENCE (#LOCALE STATE (*CONN*)))

At this point, control returns to ELI which tests the expectations which were pending before we reached this phrase. One of these expectations is satisfied and its action puts structure (2) into the waiting slot in a larger frame:

((ACTOR (NIL) <=>. (*ATRANS*) OBJECT (*AWARD*)
TO (#PERSON GENDER (MALE)

·RESEDENCE (#LOCALE STATE (*CONN*)))

The slot that (2) filled is remembered in the variable called LASTNG. Then comes JOHN DOE. No explicit expectations are satisfied. The monitor goes to a special mode called TRAP. TRAP checks whether LASTNG was a person and, if so, checks the default expectations about a person. The NAME expectation is satisfied and the specialized action which collects personal names is executed. As a result name modifiers are attached to the male Connecticut resident:

(# PERSON GENDER (MALE)

RESIDENCE (#LOCALE STATE (*CONN*))
FIRSTNAME (JOHN) LASTNAME (DOE))

After this, control goes back to the top level processor. This reads the next word, "27". Again, no expectations are immediately satisfied and the monitor traps into the secondary expectations. The AGE expectation is satisfied and the specialized action which collects AGE specification groups is executed. The result is an AGE modifier which is attached to John. OF 234 COLLEGE AVENUE also goes to TRAP, which calls the address group processor. The final result is:

(PERSON GENDER (MALE)

RESIDENCE (#LOCALE.STATE (*CONN*)

STREETNUMBER (234)

STREETNAME (COLLEGE AVENUE))

FIRSTNAME (JOHN) LASTNAME (DOE))

The following example illustrates a slightly different problem:

(3) LOUIS CAPPIELLO, YALE POLICE CHIEF

In order to figure out that being a YALE POLICE CHIEF is LOUIS CAPPIELLO's occupation we first have to collect both noun groups. This is done with the help of another secondary expectation called EXTRA-NOUNGR trap. LOUIS CAPPIELLO, generates:

(PERSON FIRSTNAME (LOUIS) LASTNAME (CAPPIELLO))

YALE POLICE CHIEF generates:

(PERSON OCCUPATION (YALE-POLICE-CHIEF))

Then another secondary expectation tests to see if LASTNG, and EXTRANG could be the same thing. If so, the two groups are merged.

Appositives can be arbitrarily complex: from simple name groups to complicated prepositional phrases and relative clauses. Very rarely are they explicitly expected. They are handled by the secondary expectations based on the general properties of things and the knowledge about the ways these things can be expressed in English. TRAP represents an attempt to implement the mechanism controlling the interaction between these expectations.

TRAP is still in the experimental stage of development. Its flow of control is rather complex. In general, first, it tries to find and test expectations about general properties of the item in LASTNG. For example, for a person it tries to collect special modifiers such as name, age, and address. If all these expectations fail, TRAP checks for possible appositives such as simple EXTRA noun groups, prepositional phrases, or relative subclauses. If one of these appositives is collected, TRAP first checks the explicit expectations which may have been pending (for example, a WHICH-clause might want to be attached to a particular physical object) and then checks the secondary expectations again. This time, it may catch some properties which it missed the first time because they were encoded in a more complicated form. In order to clarify this description let us follow a few more examples:

(3) JOHN DOE OF GENERAL MOTORS

The subgroup OF GENERAL MOTORS is caught by TRAP's prepositional phrase expectation. Since there are no specific expectations which can link JOHN DOE and GENERAL MOTORS, the default one, attached to OF is checked. Its action links the two groups as follows:

(PERSON FIRSTNAME (JOHN) LASTNAME (DOE)

SOMEREL (#ORGANIZATION ORGNAME (GENERAL-MOTORS)))

SOMEREL means that we do not really know the exact nature of the relations between JOHN DOE and GENERAL MOTORS.

In the following example

(4) US NAVY TASK FORCE WHICH HAS BEEN ON PATROL DUTY IN THE INDIAN OCEAN (left the area).

the WHICH clause is collected by TRAP's subclause expectation and is attached to US NAVY. TASK FORCE by an expectation associated with WHICH. The result is:

.(#GR-ORG PARTOF (#ORGANIZATION BRANCH (NAVY) (*USA*))

REL ((ACTOR MODFOCUS

<=> (\$PATROL PLACE (*INDIAN-OCEAN*))))) \(^\frac{1}{2}

Subclause processing represents a difficult problem on its own. The problem of subclause boundaries, for example, is as complex as that of noun groups. In solving it, I used the same philosophy as for noun groups boundaries: the current subclause is finished when the next word is not expected by any expectations from that subclause.

The traditional stumbling block of all parsers - AND conjunction - is also handled by a series of TRAP expectations. Although, in difficult cases we cannot avoid backtracking, simple cases like

(5) JOHN AND MARY ATE SOUP AND LASAGNA AND LEFT.

can be processed by the program with the help of the following heuristics. If AND is not specifically expected and occurs in the sentence between two noun groups which can be combined in one

noun groups. Otherwise, if AND occurs in the sentence after the verb it is interpreted as a link between two clauses.

All examples presented so far deal with noun groups describing Picture Producers. The next example shows how Concept Producers are handled.

(6) (Castro condemned) THE EXECUTION OF THOUSANDS OF COMMUNISTS
IN INDONESIA.

THE EXECUTION refers to the script SEXECUTION. This script has among its roles the VICTIM of the execution. Among the expectations associated with the script there is one which expects the victim to be a person (or a group of people) introduced by the preposition OF. Hearing the word EXECUTION sets up an expectation for the word OF (someone). THOUSANDS OF is another unit which creates a group whose members follow. This expectation is satisfied by COMMUNISTS. When IN INDONESIA comes it is not expected by anybody. Hence, the nown group collection is suspended and THE EXECUTION which is now transformed into:

[\$EXECUTION VICTIM (#GROUP MEMBER (#PERSON

OCCUPATION (COMMUNIST)

COMPNUM (ORDER VAL (1000)

is placed in the MOBJECT slot of MTRANS for "condemned". After this, IN INDONESIA is collected:

(LOC VAL (*INSIDE* PARTOF (*INDONESIA)))

Now the processor must decide whether Indonesia was the place where the execution occured or where it was condemned by Castro. In the absence of other expectations, the program picks the first alternative.

To conclude this section. I would like to discuss the treatment of words unknown to the program. People have a timited ability to interpret such words from context, or, at least, to ignore them. We tried to put some of this kind of intelligence in our programs. The problem has two aspects. First, we have to figure out what role the unknown word (or words) might play in the sentence and then interrogate the context to find out what meaning this word might have. The borderline between these two tasks is very vague. As of now, most of the first part is handled by NGP and most of the second part by Rick Granger's program called FOUL-UP (Granger 1977). The following examples illustrate how the NGP part works.

(7) JOHN ATE A FOO FISH.

FOO is interpreted as an unknown modifier and ignored.

(8) JOHN ATE A BLUE FOO.

The output of NGP

(#BOGUS COLOR (BLUE) LEXVAL (FOO) REF (INDEF))

is handed to FOUL-UP for further investigation.

(9) DR FOO BAZ ATE A BLUE FISH.

FOO BAZ are interpreted as the first and the last names of a person whose occupation is DOCTOR.

(10) FOO'S FISH WAS BAD

FOO is interpreted as the last name unless (9) and (10) occurred in the same story, in which case FOO would have already been defined as a first name.

(11) JOHN WAS TAKEN TO THE HOSPITAL BY FOO AMBULANCE.

FOO is interpreted to be a name of an ambulance company, since AMBULANCE has a BACKWARD expectation looking for a company name.

(12) 593 FOO BAZ AVENUE

FOO BAZ is interpreted as the name of an avenue.

5. Memory and Language Processing

In this section we would like to discuss some general problems of memory and understanding as related to one very practical task. Originally the idea to write a noun group parser appeared in connection with our preliminary work on the WEIS project.— As mentioned in the introduction, WEIS is a system designed to understand and classify isolated newspaper headlines on international relations. The classifications of headlines about international interactions are triples: ACTOR (country), ACTION (one of 20 selected international interactions), and TARGET (country). The list of 50 headlines that our system can

handle (as of March 1, 1977) is given in Appendix 1.

An earlier attempt to obtain such a classification directly the input text using the "simplest possible syntax relative, to the ACTOR-ACTION-TARGET failed dramatically semantics" (Tripodes et. al. \1974). It was clear to us from the beginning that in order to correctly endode a sentence one has to it. Further, one cannot speak about understanding. without meaning representation and memory models. Conceptual Dependency was our natural choice for a meaning representation system. As for the memory, we thought that a very limited model containing only basic information about countries, people, physical objects, and some organizations would be sufficient for the task. This model proved to be inadequate. To determine the meaning of even simple sentences we need much more detailed knowledge, about current, and past relations between countries, their sizé, policies, and many more other features. Consider the following examples:

(1) LEBANESE OFFICIALS SEIZED 1500 RIFLES FROM BULGARIA (*)

Were the rifles owned by Bulgaria, made in Bulgaria, or did they come from Bulgaria? A reader who follows international relations would know that it is highly implausible that the Lebanese

^(*)Some of the examples in this section might look cumbersome or artificial, but, in fact, all of them are real newspaper headlines which WEIS had to process and classify.

officials would enter into direct conflict with Bulgaria by seizing its property. An informed reader would also know that there are armed groups in Lebanon who receive supplies from Communist countries. Thus, he would conclude that the rifles probably came from Bulgaria and were seized from an unknown party. The meaning of (1) can be expressed in CD using script notation, as follows:

(ACTOR (#GR-ORG MEMBER

(PERSON PARTOF

(#ORGANIZATION TYPE (GOVERNMENT)

PARTOF (LEBANON))))

<=> (\$SEIZE)

FROM X

'OBJECT '(#GROUP MEMBER Y))

where Y is

(PHYSOBJ TYPE (WEAPON) COMPNUM (1500)

REL (ACTOR (SOMEONE) <=> (ATRANS) OBJECT Y

FROM (BULGARIA) TO.

. X))

If, on the other hand, the headline had been ISRAEL SEIZED RIFLES FROM EGYPT, with the two countries engaged in a direct conflict, then a knowledgeable reader would have probably concluded that the rifles were seized from Egypt. Here different interpretations lead to different WEIS encodings with different TARGETS for the ACTIONS.

The difficulty in the above examples comes from the ambiguity of the word FROM. It can be a link between the verb SEIZE and its indirect object or it can link a qualifier to a noun group. In general, prepositions help us to identify the roles of played by the words they precede, but very often they are not sufficient. Consider the preposition BY in the following sentence:

(2) USA PROTESTS INDIA'S ABANDONMENT OF NEUTRALITY BY
ESTABLISHING FULL DIPLOMATIC RELATIONS WITH NORTH VIETNAM

Even after we have established that BY introduces the instrument of an action (which in itself is a nontrivial task), we still do not know which action this instrument modifies. Who established full diplomatic relations with North Vietnam, the USA or India? One has to be acquainted with the corresponding political situation in order to reject the first interpretation by making the inference that the USA was not likely to establish full diplomatic relations with North Vietnam, but India was and such an act would, in fact, be a violation of neutrality from the US viewpoint.

The preposition IN is even more troublesome:

(3) CASTRO CONDEMNED THE EXECUTION OF COMMUNISTS IN INDONESIA

Here again an informed reader would know that Castro was not "likely to pronounce his condemnations in Indonesia and, hence, we conclude that it was the execution of communists which took place in that country."

Another difficulty is the scope of the prepositions.

Consider:

(4) SOUTH KOREA SMASHES 7 NORTH KOREAN ESPIONAGE RINGS INVOLVING
9 SPIES AND 14 COLLABORATORS IN SEOUL, TEAGU, AND POHANG

For some reason we merge 9 spie and 14 collaborators in a group of 23 individuals, which is split into 7 groups that are distributed in three South Korean cities. If, instead of 9 SPIES. we had 9 COMMUNICATION SATELLITES, then we would have placed only the 14 collaborators in these cities, keeping the location of the satellites unspecified.

Semantic ambiguity does not have to be related to any particular preposition. Consider the following example:

(5) CAMBODIA HOSTS USA ASSISTANT SECRETARY OF STATE FOR BRIEFING ON THE OUTCOME OF US PRESIDENT NIXON VISIT TO CHINA

Who was briefing whom? Our knowledge of the international situation at the time of Nixon's first visit to China tells us that it was the USA who was briefing Cambodia.

Even a relatively simple noun phrase such as RUSSIAN RADAR INSTALLATION in

(6) ISRAEL SEIZES A RUSSIAN RADAR INSTALLATION IN EGYPT

can be a source of a mistake in encoding. Only the knowledge of the precise nature of the relations between Israel, Egypt, and the USSR allows the reader to conclude that the radar in question .

was made in rather than possessed by the USSR, and that the TARGET of the Israeli ACTION was Egypt rather than Russia.

The correct understanding and classification of the above examples requires very detailed knowledge of international relations. And these were rather simple sentences whose meaning seems obvious to most people. Many real newspaper headlines are much more puzzling:

- (7) JORDAN SAID THE ARABS FAILED THE TEST
- (8) FORD TO NEW YORK: DROP DEAD

Suppose now that we have a detailed model of the political world which enables us to make all necessary inferences about international affairs. Will such a model be sufficient for the correct understanding of political headlines? & On the surface the answer is yes. With such a model we would be able to make all the inferences we needed/in our analysis of the examples in this section. But note that in our discussion of these examples only listed the necessary inferences. We said nothing about how we arrived at the necessity to use these particular inferences. In other words, the memory itself is not enough. We need to know how to get the parser to ask the memory the right questions. This paper describes in detail how such questions are treated inside English noun groups. Most of the examples in this section go beyond the noun group framework. We were able to handle them by attaching the ad hoc requests to the secondary expectations deefining instrumental and locative prepositions. This is not

always a satisfactory solution, and finding a general solution to this problem is one of the areas of our current research.

6. Comparison with other Work and Conclusions

The work presented in this paper is a further development of The main difference between this program and most other ELI. parsers, (see, for example, Winograd 1972, Woods and Kaplan 1971) is that it does not separate its linguistic knowledge from its general world knowledge. In other programs the analysis is done First the input is analyzed syntactically and two stages. then the result is interpreted semantically. For example, LUNAR (Woods and Kaplan 1971) uses the Augmented Transition Network (Woods 1970) to generate possible syntactic' interpretations of a given sentence and then applies its domain knowledge to determine whether the interpretation is meaningful. Thus, noun groups are parsed purely syntactically and their meaning is not established until the whole, sentence is. parsed. In each noun group the first noun is assumed to be the head noun. If later this turns out to be incorrect, the system backs up tries to accumulate more elements into the noun group. example, the correct processing of the phrase PRESIDENT JIMMY CARTER which contains three nouns will require LUNAR to back up This means that a great deal of unnecessary effort is spent in finding syntactically plausible but meaningless parses. This is especially true when one tries to relax some syntactic allow for slightly incorrect sentences. In NGP the parsing is done by the use of rules most appropriate in a

situation, semantic or syntactic. Thus, in the example above, the programs contained in the dictionary entry for the word PRESIDENT will immediately collect JIMMY CARTER. Most of the program's linguistic knowledge is not built into its control structure but stored in the dictionaries and used as a part of its general knowledge. This makes the program very flexible, easily extensible, and provides for the correct processing of "ungrammatical" sentences.

Another important difference between this program and both Winograd's and the LUNAR system is in the representation of meaning. The meaning of a sentence in Winograd's system is a program for manipulating blocks. The meaning of a sentence in the LUNAR system is a request for information about some properties of the rocks from the Moon. Both these systems are very specialized and not easily extensible to other domains: Our analyzer is based on the Conceptual Dependency representation system which is not limited to any particular domain. The same program can handle a wide variety of topics, from car accident reports, to state visits to China.

The results presented in this paper show that both linguistic and world knowledge are required for correct and efficient handling of noun groups. The program demonstrates the possibility and the advantages of the simultaneous application of both kinds of knowledge, without separating the process of understanding into syntactic and semantic stages. The program provides an intuitively plausible model for a hierarchically

organized, expectation based control mechanism for analyzing noun groups.

7: References

- 1] Cullingford, R.E. (1975). An Approach to the Representation of Mundane World Knowledge: The Generation and Management of Situational Scripts. American Journal of Computational Linguistics. Microfiche 44.
- 2] Cullingford, R.E. (1977). Organizing World Knowledge for Story Understanding by Computer. Unpublished Doctoral Dissertation. Department of Engineering and Applied Science, Yale University.
- 3] Granger, R.H. (1977). FOUL-UP. Paper to be presented at the, Fifth International Joint Conference on Artificial Intelligence. Cambridge, Massachusetts.
- 4] Newell, A. (1973). Production systems: Models of Control Structures. In Chase, W.C. ed. Visual Information Processing. Academic Press, New York.
- 5] Riesbeck, C.K., and Schank, R.C. (1976)... Comprehension by Computer: Expectation-based Analysis of Sentences in Context. Yale Dept. of Comp. Sci. Research Report #78.
- 6] Schank, R.C. (1972). Conceptual Dependency: A Theory of Natural Language Understanding. Cognitive Psychology 3(4):552-631, 1972.
- 7] Schank, R.C. (1973). Identification of Conceptualizations Underlying Natural Language. In R. C. Schank and K. Colby, eds. Computer Models of Human Thought and Language. W. H. Freeman, San Francisco.
- 8] Schank, R.C. et al. (1975). Conceptual Information Processing. North Holland, Amsterdam.
- 9] Schank, R.C. and Abelson, R.P. (1975). Scripts, Plans, and Knowledge. Proceedings of the Fourth International Joint Conference on Artificial Intelligence, Tbilisi, USSR.
- 10] Schank, R.C. and Abelson, R.P. (1977). Scripts, Plans, and Understanding. Lawrence Erlbaum Associates, Hillsdale, N.J.
- 11] Tripodes, P.G., Greenstein, S., Dolan, P., Bodnaras, M., Shure, G.H. (1974). Automatic Content Coding of English Text, Paper submitted for presentation at ACM 1974 San Diego Meetings.
- 12] Wilensky, R. (1976). Machine Understanding of Human Intentionality. Proceedings of the ACM Annual Conference. Houston, Texas.

- 13] Winograd, T. (1972). Understanding Natural Language. Academic Press, New York.
- 14] Woods, W.A. (1970). Transition Network Grammars for Natural Language Analysis. Comm. ACM 13(10):591-606, 1970.
- 15] Woods, W.A. and Kaplan, R.M. (1971). The Lunar Sciences Natural Language Information System. BBN Report No. 2265. Bolt Beranek and Newman Inc. Cambridge, Massachusetts.

Appendix 1

Sentences processed by the YALE-WEIS program

- 1. LAO FORCES ABANDON BAN-NHIL TO NORTH VIETNAM.
- 2. USA NAVY TASK FORCE WHICH HAS BEEN ON PATROL DUTY -IN THE INDIAN OCEAN FOR A MONTH LEAVES THE AREA.
- 3. CUBA GRANTS ASYLUM TO A USA MARINE.
- 4. FRANCE SELLS 50 MIRAGE JET PLANES TO LIBYA .
- 5. USA APPOLLO 12 ASTRONAUTS VISIT INDONESIA.
- 6. ISRAELI TASK FORCE SEIZES UAR RADA'R INSTALLATION ON SHADWAN.
- 7. LEBANESE OFFICIALS SEIZED 1500 RIFLES FROM BULGARIA.
- 3. GUINEA EXPELS 1 SPANISH CITIZEN.
 - 9. AUSTRIA EXPELLED 4 CHINESE IN A CONTROVERSY OVER THEIR STATUS AND ACTIVITIES.
 - 10. CASTRO CONDEMNED THE EXECUTION OF THOUSANDS OF COMMUNISTS ,IN INDONESIA.
 - 11. SUKARNO EXPLAINED THE EXPULSION OF THE USA NEWSMEN.
 - 12. JORDAN SAID ARABS FAILED THE TEST.
 - 13. ALGERIA PROTESTED TO SPAIN THE DETENTION OF AN ALGERIAN DIPLOMAT IN CONNECTION WITH MURDER OF AN OPPOSITION LEADER.
- 14. USA CONCEDE THAT USA AIR UNITS MIGHT HAVE HIT A CAMBODIAN VILLAGE.
- 15. PRIME MINISTER WILSON SENT A NOTE CONCERNING THE VIETNAM WAR TO PREMIER KOSYGIN.
- 16. VATICAN PRALSED UNITED KINGDOM EFFORTS TOWARD PEACE IN VIETNAM.
- 17. PRESIDENT JOHNSON SENT CONGRATULATORY MESSAGE TO PRIME MINISTER INDIRA GANDHI.
- 18. THAILAND SAYS IT WILL SOON SEND 1000 TROOPS TO VIETNAM.
- 19. USA PRESIDENT PROMISED ISRAELI PRIME MINISTER HE WOULD GIVE CONSIDERATION TO ISRAELI REQUESTS FOR ARMS.
- 20. SPAIN GIVES BACK TERRITORY OF IFNI TO MOROCCO.
- 21. SPAIN GIVES POSSESSIONS OF HISTORIAN GARCILASO TO PERU.

- 22. UAR FORCES ARE BOLSTERED BY KUWAIT.
- 23. US PRESIDENT ANNOUNCED THAT AUSTRIAN CHANCELLOR ACCEPTED US INVITATION TO VISIT THE USA.
- 24. USA GENERAL SAYS NORTH VIETNAM HAS UPHELD THE BOMBING AGREEMENT.
- 25. SPAIN AND RUMANIA SIGNED AGREEMENT ESTABLISHING FULL CONSULAR AND COMMERCIAL RELATIONS.
- 26. KENIA SIGNS INTERNATIONAL COFFEE AGREEMENT OF 1962:
- 27. USA, UNITED KINGDOM, NETHERLAND, NORWAY ASSIGNED WARSHIPS TO NEW PERMANENT FORCE OF NATO.
- 28. FUNERAL OF INDIA'S SHASTRI ATTENDED BY USSR KOSYGIN, USA HUMPHREY, UNITED KINGDOM'S BROWN, AFGANISTAN'S MAIMANDA, PAKISTAN'S FARUQUE, AND REPRESENTATIVE OF U THANT.
- 29. CAMBODIA HOSTS USA ASSISTANT SECRETARY OF STATE GREEN FOR A BRIEFING ON THE OUTCOME OF US PRESIDENT NIXON VISIT TO CHINA.
- .30. SOUTH VIETNAMESE FOREIGN MINISTER TRAM VAN LAM SAYS THE SOUTH VIETNAMESE GOVERNMENT APPROVES THE FINAL USA = CHINA COMMUNIQUE AND FEELS IT UPHOLDS THE USA COMMITMENTS TO SOUTH VIETNAM.
- 31. US ASS TANT SECRETARY FOR EAST ASIAN AFFAIRS MARSHALL GREEN REAFFIRMS USA DEFENSE COMMITMENT TO TAIWAN AND SAYS THE USA WILL CONTINUE DIPLOMATIC RELATIONS WITH THE TAIWANESE GOVERNMENT.
- 32. NORTH VIETNAM TO ESTABLISH FULL DIPLOMATIC RELATIONS WITH SWEDEN.
- 33. USA PROTESTS INDIA'S ABANDONMENT OF NEUTRALITY BY ESTABLISHING FULL DIPLOMATIC RELATIONS WITH NORTH VIETNAM.
- 34. TAIWAN AND UN SIGNED AGREEMENT TO BUILD TYPHOON AND FLOOD WARNING SYSTEM.
- 35. CHÍNA EXPELLED ITALIAN MISSION BECAUSE TRIP BLESSED BY POPE.
- 36. WEST GERMANY CAUGHT 5 SOVIET CITIZENS SPYING ON WEST GERMANY.
- 38. SYRIA AND ISRAEL EXCHANGE FIRE.
- 39. NORTH VIETNAM ASKED THE USSR AND CHINA TO CONTINUE AID TO HIS COUNTRY.
- 40. THAI MILITARY SOURCES ACCUSED CAMBODIA OF FIRING ON THAI TERRITORY.
- 41. WEST GERMANY REJECTS USSR CRITICISM OF NATO MANEUVERS.

- 42. CZECHOSLOVAKIA REFUSES TO LET USA STUDENTS ENTER-CZECHOSLOVAKIA.
- 43. USSR CANCELS INDONESIAN FOREIGN MINISTER VISIT TO MOSCOW.
- 44. USA PRESIDENT SIGNED EXECUTIVE ORDER TO CUT OFF TRADE WITH RHODESIA.
- 45. SOUTH KOREA SMASHES 7 NORTH KOREAN ESPIONAGE RINGS INVOLVING 9 SPIES AND 14 COLLABORATORS IN SEOUL, TAEGU, AND THE EASTERN PORT OF POHANG.
- 46. HONDURAS SAID IT HAD EXPELLED SOME SALVADORIANS FOR ILLEGAL IMMIGRATION.
- 47. CHINA DEMONSTRATES IN PEKING AT USSR, EMBASSY.
- 48. USSR MILITARY UNITS PARTICIPATE IN MONGOLIAN PARADE.
- 49. NIGERIA. TAKES BIAFRAN PROVISIONAL CAPITAL OF OWERRI.
- 50. LEBANESE TOWNSPEOPLE SET FIRE TO ARAB COMMANDO OFFICE.